Involuntary Eue-Movement Signatures Differ for Recognition of Oneself, Familiar and Unfamiliar Faces Lisa Schwetlick^{1,3,6} Hendrik Graupner^{2,4} Olaf Dimigen⁵ Ralf Engbert^{1,3} ¹Department of Psychology, University of Potsdam, Germany ² Bundesdruckerei GmbH, Berlin, Germany ³ DFG CRC1294 Data Assimilation, University of Potsdam, Germany ⁴ Hasso Plattner Institute and University of Potsdam, Germany ⁵ Faculty of Behavioural and Social Sciences, University of Groningen, Netherlands ⁶ Laboratory of Psychophysics, EPFL, Lausanne, Switzerland Correspondence: lisa.schwetlick@uni-potsdam.de ## Experiment ### Background and Motivation - Pupil dilation and microsaccade rate (MSR), though primarily functionally driven, are modulated by cognition and emotion [4, 5]. - Face recognition is tightly coupled to visual, cognitive, and affective processing. - In Oddball paradigms **infrequent** target stimuli cause stronger pupil dilation and microsaccade inhibition related to increased attention. - Previous work shows that pupil dilation is modulated by face recognition, but evidence for MSR is inconclusive [1, 2, 3]. - Experiments typically use entrained faces or famous faces as familiar, not faces from participants real - Better understand the underlying processes of face recognition. - Research the potential use of oculomotor measures in revealing hidden knowledge or in biometric identification procedures. #### Method - 116 participants from 2 schools - -> Knew each other within their group but not between groups. - A professional photographer took standardized pictures of all faces. - Eye tracking using a Eyelink 1000, binocular, 500Hz - Images were shown a 11.4° visual angle for 300ms. - 10 x their own face (10 trials) - 5 x 3 selected peers (15 trials) - 5 x 3 selected strangers (15 trials) - 1 x 30 strangers (30 trials) - 1 x 30 peers (30 trials) - DV: Microsaccade rate and Pupil size ## Pupil Size - We find significant differences comparing: Self-Others and Peers-Strangers - Differences emerge primarily during dilation, mostly after 1.2 s - Dilation decreases with image repetition - Self: strongest dilation for first presentation - Stranger: strongest dilation for second presentation - Linear Mixed Model (LMM): Pupil Size ~ 1+ Face * Rep + Time + Trial + (1 + Face + Rep2 + Rep3 | Subj) + (1 + Face(Se - 0) | Img) #### Contrasts: - Face: (Self vs. Others), (Peers vs Strangers) - Repetition: sliding differences contrast #### Covariates: - Time, Trial Random Effects: - Subject, Image | Phase | Se-O | P-St | 1st - 2nd | 2nd - 3rd | Se-0 :
1st-2nd | P-St:
1st-2nd | |---------|------------------|------------------|--------------------|--------------------|----------------------|---------------------| | Base. | - | - | _ | _ | - | - | | Constr. | - | - | - | _ | 0.018
(t=-5.8) | -0.007
(t=-7.8) | | Dilat. | 0.052
(t=6.1) | 0.009
(t=3.2) | - | - | -0.031
(t=-9.0) | -0.010
(t=-10.5) | | Late D. | 0.095
(t=8.5) | 0.012
(t=3.4) | -0.028
(t=-3.0) | -0.024
(t=-2.3) | -0.092
(t=-25.6) | -0.028
(t=-26.8) | | Stab. | 0.072
(t=6.4) | 0.013
(t=3.1) | -0.044
(t=-3.7) | - | -0.140
(t= -37.7) | -0.025
(t=-24.0) | - Large between-subject differences: some few - In a post-experiment questionnaire, subjects rated all faces, with regard to how well they knew each other. - Large within-subject differences between trials even show a reliably inverse effect. - Compared to acquaintances, close friends evoke responses more similar to one's own face. - LMM confirms that the difference Self-Close Friend is significant only in the window 1200-2000ms. | Phase | Se-CI | Se-Ac | Se-St | 1st - 2nd | Se-CI:
1st-2nd | Se-Ac:
1st-2nd | Se-St:
1st-2nd | |---------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|--------------------| | Base. | - | - | _ | - | - | - | - | | Constr. | - | - | -0.008
(t=-2.2) | -0.022 (t=
-2.5) | -0.039
(t=-8.6) | 0.043
(t=11.86) | 0.041
(t=11.6) | | Dilat. | - | -0.049
(t=-6.0) | 0.064
(t=-7.3) | -0.023
(t=-2.5) | -0.039
(t=-8.6) | 0.043
(t=11.8) | 0.042
(t=-11.6) | | Late D. | -0.058
(t=-3.2) | -0.090
(t=8.4) | 0.112
(t=10.0) | -0.090
(t=-9.1) | - | 0.080
(t=23.3) | 0.120
(t=32.4) | | Stab. | - | -0.071
(t=-6.0) | -0.092
(t=8.0) | 0.138
(t=-11.1) | 0.062 (t=
12.4) | 0.124
(t=34.23) | -0.170
(t=43.2) | ### Microsaccades Microsaccade - Used Poisson Rate test to compare conditions time windows 200-600ms and 600-1200 - We added to the LMM a factor for the diagnostic window (300-600ms), i.e., presence of microsaccades in the most Presence/Absence of Microsaccades shows an - Including the closeness rating effect on pupil size only weakly, and only in the shows that the Close Friends condition behaves more like Microsaccade Onset Time [ms] Aquaintances and Strangers in - MSR delays are much shorter than pupil size: early reactions modulated only by own face indicates that self-recognition is faster than other-recognition ### Discussion - Self-recognition, recognition of familiar faces, and unfamiliar faces cause different in MSR and Pupil signatures. - The effect diminishes with image repetition, suggesting influences of surprise and attention, more than recognition. - Self-recognition and recognition of close friends not easily distinguished in the pupil response. - Potential applicability in concealed information testing. #### References [1] Chen, I. Y., Büchel, P., Karabay, A., van der Mijn, R., Mathot, S., & Akyurek, E. G. (2023). Concealed information detection in rapid serial visual presentation with oculomotor measures. PsyArXiv. [2] Rosenzweig, G., & Bonneh, Y. S. (2019). Familiarity revealed by involuntary eye movements on the fringe of awareness. Scientific Reports, 9(1). [3]Rosenzweig, G., & Bonneh, Y. S. (2020). Concealed information revealed by involuntary eye movements on the fringe of awareness in a mock terror experiment. Scientific Reports, 10(1). [4] Mathôt, S. (2018). Pupillometry: Psychology, physiology, and function. *Journal of Cognition*, 1(1), 16. [5] Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. *Vision* Research, 43(9),1035–1045.